Motor Slot Fill and Design for Manufacturability

WINDINGS
Slot Fill Topics

- What is Slot Fill Factor?
- How to Calculate Total Slot Fill
- Slot Fill and Manufacturability
- Design for Manufacturing Solutions
What is Slot Fill Factor?

- What is the Slot Fill (SF) Factor:
 - The slot fill factor is ratio of the cross-sectional area of the amount of material inside of a stator slot compared to the amount of total available space of a bare slot
 - Copper slot fill vs Total slot fill

- Why is Slot Fill Important?
 - Copper slot fill is useful during the design of the motor
 - High slot fill designs can allow for increased conductor area or decreased slot area to reduce losses
 - Total slot fill is more useful during manufacturing
 - The slot fill factor will affect the difficulty of being able to insert the wire and other materials into the slots
How to Calculate Total Slot Fill

- Total slot fill includes the cross-sectional area of all materials going into the slot
 - Wire, liners, wedges, etc.

- Determine the following:
 - Total cross-sectional area of bare slot: A_{Slot}
 - Total cross-sectional area of all insulating materials: $A_{Materials}$
 - Total area of magnet wire: $A_{Total\ Wire}$

- Total Slot Fill
 - $S_{F_{Total}} = \frac{A_{Total\ Wire} + A_{Materials}}{A_{Slot}}$
How to Calculate Total Slot Fill

- Total cross-sectional area of bare slot: A_{Slot}
 - Use geometry or CAD file to estimate bare slot area

- Total cross-sectional area of all insulating materials
 - Width and thickness of liners, wedges, phase separators, etc.
 - $A_{Materials} = A_{liner} + A_{wedge} + \cdots$
How to Calculate Total Slot Fill

- **Total area of magnet wire**
 - Calculate area of one wire, including insulation
 - \(A_{\text{wire}} = (\pi r_{\text{wire}}^2) \)
 - Multiply the wire area by the number of wires in parallel and the number of turns per coil to get the total coil area
 - \(A_{\text{coil}} = A_{\text{wire}} \times N_{\text{parallel}} \times TPC \)
 - Convert total coil area to a diameter
 - \(D_{\text{coil}} = 2 \times \sqrt{\frac{A_{\text{coil}}}{\pi}} \)
 - Square the diameter to get estimated coil area
 - \(A_{\text{Est}} = D_{\text{coil}}^2 \)
 - Multiply the estimated coil area by the total number of coils per slot
 - \(A_{\text{Total wire}} = A_{\text{Est}} \times \#_{\text{coils/slot}} \)
Slot Fill and Manufacturability

- Typical Slot Fill Factors vs Difficulty:
 - Very Difficult: 80+%%
 - Difficult: 70-80%
 - Normal: 60-70%
 - Typically apply at the inserting operation

- The ranges of each difficulty will vary depending on other design factors
 - Stack length to diameter aspect ratio
 - Slot opening
 - Coil bundle size
 - Magnet wire size
Slot Fill and Manufacturability

- Additional factors that affect the manufacturability
 - Slot shape
 - Lamination variation
 - Lay of the wires in the slot
 - Winding: random vs precision
 - Type of slot insulation

- Application specific validation techniques
 - 3D printed stacks
 - Steel EDM stacks
Design for Manufacturing Solutions

- **Slot opening**
 - Minimum of 2x the wire diameter, typical 3-4x the wire diameter
 - Use protective wire guides

- **Slot Shape**
 - Round vs square bottom

- **Large coil size**
 - Double back: 1/2 turns, 2x the coil per set
 - 2 Coils Make 1: 1/2 turns, 2x the coil sets

- **Magnet wire size**
 - Typical sizes range from: 22AWG – 28 AWG

- **Manufacturing Techniques**